Five-Membered 2,3-Dioxo Heterocycles: LVI.* Reaction of 3-Aroyl-1*H*-pyrrolo[2,1-*c*][1,4]benzoxazine-1,2,4-triones with Acyclic Enamino Ketones

N. L. Racheva, M. A. Belova, and A. N. Maslivets

Perm State University, ul. Bukireva 15, Perm, 614990 Russia e-mail: koh2@psu.ru

Received May 16, 2006

Abstract—3-Aroyl-1*H*-pyrrolo[2,1-*c*][1,4]benzoxazine-1,2,4-triones react with 4-arylaminopent-3-en-2-ones and 3-amino-1,3-diphenylprop-2-en-1-ones to give substituted 4-aroyl-3-hydroxy-1-(*o*-hydroxyphenyl)-1,7-di-azaspiro[4.4]nona-3,8-diene-2,6-diones.

DOI: 10.1134/S1070428008040192

Recyclizations and heterocyclizations of 4-acyl-1*H*pyrrole-2,3-diones, including those fused to a nitrogencontaining heteroring at the *a* side, by the action of difunctional nucleophiles are widely used as an accessible method for building up various fused heterocyclic systems [2, 3]. We previously showed that 4-acyl-1*H*pyrrole-2,3-diones fused to 1,4-benzoxazine system, namely 3-aroyl-1*H*-pyrrolo[2,1-*c*][1,4]benzoxazine-1,2,4-triones **Ia**–**Ic** [4], react with cyclic enamino ketones (3-amino-5,5-dimethylcyclohex-2-en-1-ones, both N-substituted and N-unsubstituted) as with 1,3-C,N-binucleophiles. The reaction involves successive attack by the β -CH and NH groups of enamino ketone on the C^{3a} and C⁴ carbon atoms, respectively,

I, Ar = Ph (a), $4 - MeOC_6H_4$ (b), $4 - BrC_6H_4$ (c); II, $R^1 = Me$, $R^2 = Ph$ (a), $4 - MeOC_6H_4$ (b), $4 - ClC_6H_4$ (c), $4 - BrC_6H_4$ (d); $R^1 = Ph$, $R^2 = PhCH_2$ (e), $4 - EtOC_6H_4$ (f); III, $R^1 = Me$ (a–l), Ph (m–r); Ar = $R^2 = Ph$ (a); Ar = $4 - MeOC_6H_4$, $R^2 = Ph$ (b); Ar = $4 - BrC_6H_4$, $R^2 = Ph$ (c); Ar = Ph, $R^2 = 4 - MeOC_6H_4$ (d); Ar = $R^2 = 4 - MeOC_6H_4$ (e); Ar = $4 - BrC_6H_4$, $R^2 = 4 - MeOC_6H_4$ (f); Ar = Ph, $R^2 = 4 - ClC_6H_4$ (g); Ar = $4 - BrC_6H_4$, $R^2 = 4 - MeOC_6H_4$ (j); Ar = $4 - BrC_6H_4$ (k); Ar = $R^2 = 4 - BrC_6H_4$ (l); Ar = $R^2 = 4 - ClC_6H_4$ (l); Ar = $4 - BrC_6H_4$ (l); Ar = $R^2 = 4 - ClC_6H_4$ (l); Ar = $4 - BrC_6H_4$ (l); Ar = $R^2 = 4 - BrC_6H_4$ (l); Ar = $R^2 = 4$

^{*} For communication LV, see [1].

of pyrrolobenzoxazinetrione and is accompanied by cleavage of the oxazine ring at the C^4-O^5 bond to give 3'-aroyl-4'-hydroxy-1'-(o-hydroxyphenyl)-6,6-dimethyl-6,7-dihydrospiro[indole-3,2'-pyrrole]-2,4,5'-(1H,1'H,5H)-triones [5] whose structure was proved by X-ray analysis.

In continuation of our studies on reactions of hetareno[a]pyrrole-2,3-diones with difunctional nucleophiles, in the present work we examined reactions of 3-aroyl-1*H*-pyrrolo[2,1-c][1,4]benzoxazine-1,2,4-triones Ia-Ic with acyclic enamino ketones, 4-arylaminopent-3-en-2-ones IIa-IId and N-substituted 3-amino-1,3-diphenylprop-2-en-1-ones IIe and IIf. Unlike cyclic analogs, acyclic enamino ketones IIa-IIf exist as Z isomers with intramolecular hydrogen bond formed by the NH proton and ketone carbonyl oxygen atom, and the β -CH and NH groups are oriented at different sides with respect to the double C=C bond, which makes compounds II difficult to react as binucleophiles. Cyclic enamino ketones exist as E isomers where the β -CH and NH groups are arranged at the same side of the double bond, and such arrangement favors their behavior as binucleophiles.

By heating equimolar amounts of pyrrolobenzoxazinetriones **Ia–Ic** and enamino ketones **IIa–IIf** in boiling anhydrous benzene for 3–7 min (until dark violet color typical of initial compounds **I** disappeared) we obtained in high yields substituted 4-aroyl-3-hydroxy-1-(*o*-hydroxyphenyl)-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-diones **IIIa–IIIr**** (Scheme 1). Compounds **IIIa–IIIr** were isolated as colorless or light yellow crystalline substances melting at high temperature with decomposition; they are readily soluble in DMF and DMSO, poorly soluble in most other organic solvents, and insoluble in saturated hydrocarbons and water. Compounds **IIIa–IIIr** showed a positive test (cherry color) for enolic and phenolic hydroxy groups with an alcoholic solution of iron(III) chloride.

The IR spectra of spirobipyrroles **IIIa–IIIr** contained absorption bands due to stretching vibrations of the OH groups (a broad band in the region 3040– 3170 cm⁻¹), lactam carbonyl groups (one or two peaks at 1700–1769 cm⁻¹), and acetyl and aroyl carbonyl groups (two peaks at 1620–1688 cm⁻¹ in the spectra of **IIIa–IIII** and at 1620–1682 cm⁻¹ in the spectra of **IIIm–IIIr**). Compounds **IIIa–IIIr** showed in the ¹H NMR spectra (DMSO- d_6) signals from protons in the aromatic rings and substituents attached thereto, Presumably, in the first step activated β -CH group in acyclic enamino ketone II adds at the carbon atom in the 3a-position of pyrrolobenzoxazinetrione I, as in reactions of the latter with common nucleophiles [2–4]. Next follows isomerization of the enamino fragment from Z configuration to E and pyrrole ring closure as a result of intramolecular attack by the amino group on the lactone carbonyl carbon atom (C⁴) in the oxazine ring of I, which is accompanied by cleavage of the C⁴–O⁵ bond. The described reaction may be regarded as a fairly rare example of regioselective synthesis of difficultly accessible spiro-fused bipyrrole heterocyclic system with various substituents in several positions of both pyrrole rings.

EXPERIMENTAL

The IR spectra were recorded on a UR-20 spectrometer from samples dispersed in mineral oil. The ¹H and ¹³C NMR spectra were measured on a Bruker AM-400 instrument (400 MHz for ¹H) from solutions in DMSO- d_6 using tetramethylsilane as internal reference. The purity of the products was checked by thinlayer chromatography on Silufol plates using ethyl acetate or ethyl acetate–benzene (1:5) as eluent; spots were detected by treatment with iodine vapor.

9-Acetyl-4-benzoyl-3-hydroxy-1-(2-hydroxyphenyl)-8-methyl-7-phenyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIIa). A solution of 1.0 mmol of compound Ia and 1.0 mmol of enamine IIa in 10 ml of anhydrous benzene was heated for 3 min under reflux. The mixture was cooled, and the precipitate was filtered off. Yield 88%, mp 198–199°C (from EtOAc). IR spectrum, v, cm⁻¹: 3050 br (OH), 1765 (C⁶=O), 1705 (C²=O), 1640 and 1626 (4-C=O, 9-C=O). ¹H NMR spectrum, δ , ppm: 2.07 s (3H, Me), 2.21 s (3H, MeCO), 6.89–7.85 m (14H, H_{arom}), 10.00 s (1H, 2'-OH), 12.70 br.s (1H, 3-OH). Found, %: C 70.40; H 4.67; N 5.62. C₂₉H₂₂N₂O₆. Calculated, %: C 70.44; H 4.48; N 5.67.

Compounds **IIIb–IIIr** were synthesized in a similar way.

singlets from the 8-methyl group and 9-acetyl group at δ 2.04–2.08 and 2.17–2.21 ppm, respectively (**IIIa– IIII**), a doublet of doublets from the diastereotopic benzylic protons at δ 4.39–4.80 ppm (**IIIm–IIIo**), a singlet from the phenolic hydroxy proton at δ 9.94– 10.20 (**IIIa–IIII**) or 9.53–9.76 ppm (**IIIm–IIIr**), and a broadened singlet from the enolic hydroxy proton at δ 12.00–12.70 ppm.

^{**} For preliminary communication, see [6].

9-Acetyl-3-hydroxy-1-(2-hydroxyphenyl)-4-(4-methoxybenzoyl)-8-methyl-7-phenyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIIb). Yield 97%, mp 209–212°C (from EtOAc). IR spectrum, v, cm⁻¹: 3160 br (OH), 1754 (C⁶=O), 1703 (C²=O), 1667 and 1628 (4-C=O, 9-C=O). ¹H NMR spectrum, δ , ppm: 2.05 s (3H, Me), 2.18 s (3H, MeCO), 3.86 s (3H, OMe), 6.82–7.87 m (13H, H_{arom}), 9.98 s (1H, 2'-OH), 12.53 br.s (1H, 3-OH). Found, %: C 68.59; H 4.71; N 5.36. C₃₀H₂₄N₂O₇. Calculated, %: C 68.70; H 4.61; N 5.34.

9-Acetyl-4-(4-bromobenzoyl)-3-hydroxy-1-(2-hydroxyphenyl)-8-methyl-7-phenyl-1,7-diazaspiro-[4.4]nona-3,8-diene-2,6-dione (IIIc). Yield 87%, mp 210–211°C (from EtOAc). IR spectrum, v, cm⁻¹: 3170 br (OH), 1753 (C⁶=O), 1703 (C²=O), 1666 and 1631 (4-C=O, 9-C=O). ¹H NMR spectrum, δ , ppm: 2.07 s (3H, Me), 2.20 s (3H, MeCO), 6.85–7.76 m (13H, H_{arom}), 10.02 s (1H, 2'-OH), 12.40 br.s (1H, 3-OH). Found, %: C 60.87; H 3.63; Br 14.07; N 5.01. C₂₉H₂₁BrN₂O₆. Calculated, %: C 60.75; H 3.69; Br 13.94; N 4.89.

9-Acetyl-4-benzoyl-3-hydroxy-1-(2-hydroxyphenyl)-7-(4-methoxyphenyl)-8-methyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIId). Yield 85%, mp 228–230°C (from EtOAc). IR spectrum, v, cm⁻¹: 3100 br (OH), 1764 (C⁶=O), 1713 (C²=O), 1665, 1634 (4-C=O, 9-C=O). ¹H NMR spectrum, δ , ppm: 2.05 s (3H, Me), 2.19 s (3H, MeCO), 3.81 s (3H, OMe), 6.83–8.03 m (13H, H_{arom}), 9.99 s (1H, 2'-OH), 12.70 br.s (1H, 3-OH). Found, %: C 68.77; H 4.54; N 5.27. C₃₀H₂₄N₂O₇. Calculated, %: C 68.70; H 4.61; N 5.34.

9-Acetyl-3-hydroxy-1-(2-hydroxyphenyl)-4-(4-methoxybenzoyl)-7-(4-methoxyphenyl)-8-methyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIIe). Yield 87%, mp 220–222°C (from BuOAc). IR spectrum, v, cm⁻¹: 3150 br (OH), 1732 (C⁶=O, C²=O), 1688 and 1638 (4-C=O, 9-C=O). ¹H NMR spectrum, δ , ppm: 2.04 s (3H, Me), 2.17 s (3H, MeCO), 3.81 s (3H, OMe), 3.87 s (3H, OMe), 6.82–7.87 m (12H, C₆H₄), 9.98 s (1H, 2'-OH), 12.50 br.s (1H, 3-OH). Found, %: C 67.84; H 4.82; N 5.02. S₃₁N₂₆N₂O₈. Calculated, %: C 67.74; H 4.73; N 5.05.

9-Acetyl-4-(4-bromobenzoyl)-3-hydroxy-1-(2-hydroxyphenyl)-7-(4-methoxyphenyl)-8-methyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIIf). Yield 86%, mp 209–210°C (from BuOAc). IR spectrum, v, cm^{-1} : 3110 br (OH), 1765 (C⁶=O), 1704 (C²=O), 1663 and 1626 (4-C=O, 9-C=O). ¹H NMR spectrum, δ , ppm: 2.04 s (3H, Me), 2.18 s (3H, MeCO), 3.81 s (3H, OMe), 6.82–7.75 m (12H, H_{arom}), 9.99 s (1H, 2'-OH), 12.50 br.s (1H, 3-OH). Found, %: C 59.78; H 3.93; Br 13.41; N 4.55. C₃₀H₂₃BrN₂O₇. Calculated, %: C 59.71; H 3.84; Br 13.24; N 4.64.

9-Acetyl-4-benzoyl-7-(4-chlorophenyl)-3-hydroxy-1-(2-hydroxyphenyl)-8-methyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIIg). Yield 88%, mp 200–203°C (from benzene). IR spectrum, v, cm⁻¹: 3170 br (OH), 1748 (C⁶=O), 1711 (C²=O), 1668 and 1627 (4-C=O, 9-C=O). ¹H NMR spectrum, δ , ppm: 2.07 s (3H, Me), 2.20 s (3H, MeCO), 6.86– 7.92 m (13H, H_{arom}), 10.20 s (1H, 2'-OH), 12.40 br.s (1H, 3-OH). Found, %: C 65.69; H 4.21; Cl 6.65; N 5.39. C₂₉H₂₁ClN₂O₆. Calculated, %: C 65.85; H 4.00; Cl 6.70; N 5.30.

9-Acetyl-7-(4-chlorophenyl)-3-hydroxy-1-(2-hydroxyphenyl)-4-(4-methoxybenzoyl)-8-methyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIIh). Yield 87%, mp 216–217°C (from benzene). IR spectrum, v, cm⁻¹: 3160 br (OH), 1744 (C⁶=O), 1703 (C²=O), 1669 and 1626 (4-C=O, 9-C=O). ¹H NMR spectrum, δ, ppm: 2.07 s (3H, Me), 2.20 s (3H, MeCO), 3.86 s (3H, OMe), 6.86–7.87 m (12H, H_{arom}), 10.00 s (1H, 2'-OH), 12.50 br.s (1H, 3-OH). Found, %: C 64.58; H 4.09; Cl 6.39; N 4.92. C₃₀H₂₃ClN₂O₇. Calculated, %: C 64.46; H 4.15; Cl 6.34; N 5.01.

9-Acetyl-4-(4-bromobenzoyl)-7-(4-chlorophenyl)-3-hydroxy-1-(2-hydroxyphenyl)-8-methyl-1,7diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIIi). Yield 89%, mp 199–201°C (from BuOAc). IR spectrum, v, cm⁻¹: 3150 br (OH), 1759 (C⁶=O), 1708 (C²=O), 1673 and 1638 (4-C=O, 9-C=O). ¹H NMR spectrum, δ , ppm: 2.08 s (3H, Me), 2.18 s (3H, MeCO), 6.82– 7.75 m (12H, H_{arom}), 10.00 s (1H, 2'-OH), 12.50 br.s (1H, 3-OH). Found, %: C 57.33; H 3.30; Br 13.24; Cl 5.79; N 4.57. C₂₉H₂₀BrClN₂O₆. Calculated, %: C 57.30; H 3.32; Br 13.15; Cl 5.83; N 4.61.

9-Acetyl-4-benzoyl-7-(4-bromophenyl)-3-hydroxy-1-(2-hydroxyphenyl)-8-methyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIIj). Yield 90%, mp 203–204°C (from benzene). IR spectrum, v, cm⁻¹: 3170 br (OH), 1748 (C⁶=O), 1711 (C²=O), 1672 and 1628 (4-C=O, 9-C=O). ¹H NMR spectrum, δ , ppm: 2.07 s (3H, Me), 2.21 s (3H, MeCO), 6.80–7.93 m (13H, H_{arom}), 9.94 s (1H, 2'-OH), 12.40 br.s (1H, 3-OH). Found, %: C 60.68; H 3.77; Br 13.78; N 5.02. $C_{29}H_{21}BrN_2O_6$. Calculated, %: C 60.75; H 3.69; Br 13.94; N 4.89.

9-Acetyl-7-(4-bromophenyl)-3-hydroxy-1-(2-hydroxyphenyl)-4-(4-methoxybenzoyl)-8-methyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIIk). Yield 89%, mp 220–221°C (from benzene). IR spectrum, v, cm⁻¹: 3130 br (OH), 1733 (C⁶=O), 1713 (C²=O), 1661 and 1620 (4-C=O, 9-C=O). ¹H NMR spectrum, δ, ppm: 2.07 s (3H, Me), 2.18 s (3H, MeCO), 3.86 s (3H, OMe), 6.81–7.87 m (12H, H_{arom}), 10.00 s (1H, 2'-OH), 12.00 br.s (1H, 3-OH). Found, %: C 59.62; H 3.78; Br 13.30; N 4.57. C₃₀H₂₃BrN₂O₇. Calculated, %: C 59.71; H 3.84; Br 13.24; N 4.64.

9-Acetyl-4-(4-bromobenzoyl)-7-(4-bromophen-yl)-3-hydroxy-1-(2-hydroxyphenyl)-8-methyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIII). Yield 88%, mp 225–226°C (from benzene). IR spectrum, v, cm⁻¹: 3070 br (OH), 1736 (C⁶=O), 1719 (C²=O), 1661 and 1626 (4-C=O, 9-C=O). ¹H NMR spectrum, δ , ppm: 2.08 s (3H, Me), 2.18 s (3H, MeCO), 6.81–7.79 m (12H, H_{arom}), 10.00 s (1H, 2'-OH), 12.40 br.s (1H, 3-OH). Found, %: C 53.37; H 3.11; Br 24.58; N 4.23. C₂₉H₂₀Br₂N₂O₆. Calculated, %: C 53.40; H 3.09; Br 24.50; N 4.29.

4,9-Dibenzoyl-7-benzyl-3-hydroxy-1-(2-hydroxyphenyl)-8-phenyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIIm). Yield 90%, mp 279–281°C (from EtOAc). IR spectrum, v, cm⁻¹: 3040 br (OH), 1727 (C⁶=O, C²=O), 1682 and 1632 (4-C=O, 9-C=O). ¹H NMR spectrum, δ, ppm: 4.39 d.d and 4.80 d.d (1H each, CH₂Ph, J = 16.5 Hz), 6.62–7.89 m (24H, H_{arom}), 9.64 s (1H, 2'-OH), 12.40 br.s (1H, 3-OH). Found, %: C 75.98; H 4.52; N 4.34. C₄₀H₂₈N₂O₆. Calculated, %: C 75.94; H 4.46; N 4.43.

9-Benzoyl-7-benzyl-3-hydroxy-1-(2-hydroxyphenyl)-4-(4-methoxybenzoyl)-8-phenyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIIn). Yield 89%, mp 272–273°C (from EtOAc). IR spectrum, v, cm⁻¹: 3130 br (OH), 1736 (C⁶=O), 1709 (C²=O), 1681 and 1628 (4-C=O, 9-C=O). ¹H NMR spectrum, δ , ppm: 3.88 s (3H, OMe), 4.39 d.d and 4.80 d.d (1H each, CH₂Ph, *J* = 16.5 Hz), 6.66–7.90 m (23H, H_{arom}), 9.53 s (1H, 2'-OH), 12.20 br.s (1H, 3-OH). Found, %: C 74.37; H 4.63; N 4.14. C₄₁H₃₀N₂O₇. Calculated, %: C 74.31; H 4.56; N 4.23.

9-Benzoyl-7-benzyl-4-(4-bromobenzoyl)-3-hydroxy-1-(2-hydroxyphenyl)-8-phenyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIIo). Yield 91%, mp 284–285°C (from EtOAc). IR spectrum, v, cm⁻¹: 3050 br (OH), 1730 (C⁶=O, C²=O), 1677 and 1636 (4-C=O, 9-C=O). ¹H NMR spectrum, δ , ppm: 4.39 d.d and 4.79 d.d (1H each, CH₂Ph, *J* = 16.3 Hz), 6.62–7.81 m (23H, H_{arom}), 9.66 s (1H, 2'-OH), 12.60 br.s (1H, 3-OH). Found, %: C 67.61; H 3.79; Br 11.25; N 3.86. C₄₀H₂₇BrN₂O₆. Calculated, %: C 67.52; H 3.82; Br 11.23; N 3.94.

4,9-Dibenzoyl-7-(4-ethoxyphenyl)-3-hydroxy-1-(**2-hydroxyphenyl)-8-phenyl-1,7-diazaspiro**[**4.4**]-**nona-3,8-diene-2,6-dione (IIIp).** Yield 92%, mp 269–270°C (from EtOAc). IR spectrum, v, cm⁻¹: 3150 br (OH), 1769 (C⁶=O), 1728 (C²=O), 1668 and 1634 (4-C=O, 9-C=O). ¹H NMR spectrum, δ , ppm: 1.27 t (3H, CH₃, J = 6.9 Hz), 4.03 q (2H, OCH₂, J = 7.0 Hz), 6.61–7.92 m (23H, H_{arom}), 9.76 s (1H, 2'-OH), 12.40 br.s (1H, 3-OH). Found, %: C 74.26; H 4.61; N 4.29. C₄₁H₃₀N₂O₇. Calculated, %: C 74.31; H 4.56; N 4.23.

9-Benzoyl-7-(4-ethoxyphenyl)-3-hydroxy-1-(2-hydroxyphenyl)-4-(4-methoxybenzoyl)-8-phenyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIIq). Yield 90%, mp 258–259°C (from EtOAc). IR spectrum, v, cm⁻¹: 3140 br (OH), 1726 (C⁶=O), 1700 (C²=O), 1665 and 1630 (4-C=O, 9-C=O). ¹H NMR spectrum, δ, ppm: 1.28 t (3H, Me, J = 6.9 Hz), 3.88 s (3H, OMe), 3.95 q (2H, OCH₂, J = 7.1 Hz), 6.59– 7.92 m (22H, H_{arom}), 9.72 s (1H, 2'-OH), 12.20 br.s (1H, 3-OH). Found, %: C 72.73; H 4.69; N 4.10. C₄₂H₃₂N₂O₈. Calculated, %: C 72.82; H 4.66; N 4.04.

9-Benzoyl-4-(4-bromobenzoyl)-7-(4-ethoxyphenyl)-3-hydroxy-1-(2-hydroxyphenyl)-8-phenyl-1,7-diazaspiro[4.4]nona-3,8-diene-2,6-dione (IIIr). Yield 91%, mp 262–263°C (from EtOAc). IR spectrum, v, cm⁻¹: 3150 br (OH), 1736 (C⁶=O), 1723 (C²=O), 1671 and 1620 (4-C=O, 9-C=O). ¹H NMR spectrum, δ , ppm: 1.27 t (3H, Me, J = 6.9 Hz), 3.95 q (2H, OCH₂, J = 6.9 Hz), 6.60–7.86 m (22H, H_{arom}), 9.76 s (1H, 2'-OH), 12.60 br.s (1H, 3-OH). Found, %: C 66.37; H 3.99; Br 10.81; N 3.74. C₄₁H₂₉BrN₂O₇. Calculated, %: C 66.40; H 3.94; Br 10.77; N 3.78.

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 07-03-96036).

REFERENCES

 Bannikova, Yu.N., Sedegova, E.A., Khalturina, V.V., and Maslivets, A.N., *Russ. J. Org. Chem.*, 2007, vol. 43, p. 1338.

- 2. Maslivets, A.N. and Mashevskaya, I.V., *2,3-Digidro-2,3-pirroldiony* (2,3-Dihydropyrrole-2,3-diones), Perm: Perm. Gos. Univ., 2005, p. 126.
- 3. Mashevskaya, I.V. and Maslivets, A.N., 2,3-Digidro-2,3pirroldiony, kondensirovannye s razlichnymi geterotsiklami storonoi [a], i ikh benzo[b]analogi: sintez, khimicheskie svoistva, prakticheskoe primenenie (2,3-Dihydropyrrole-2,3-diones Fused to Various Heterocycles at the a Side and Their Benzo[b] Analogs. Synthesis, Chemical

Properties, and Practical Applications), Perm: Perm. Gos. Sel'skohoz. Akad., 2003, p. 140.

- Maslivets, A.N., Mashevskaya, I.V., Krasnykh, O.P., Shurov, S.N., and Andreichikov, Yu.S., *Zh. Org. Khim.*, 1992, vol. 28, p. 2545.
- Racheva, N.L., Shurov, S.N., Aliev, Z.G., and Maslivets, A.N., *Russ. J. Org. Chem.*, 2007, vol. 43, p. 108.
- Racheva, N.L. and Maslivets, A.N., *Russ. J. Org. Chem.*, 2006, vol. 42, p. 451.